Synthesis of Novel Diphenyl Ether-Based Bis-Heterocycles as Novel Hybrid Molecules via Michael and Other Cyclocondensation Reactions

ACS Omega. 2024 Jan 5;9(3):4073-4084. doi: 10.1021/acsomega.3c09081. eCollection 2024 Jan 23.

Abstract

Molecular hybridization is a technique used in drug creation that involves combining the pharmacophoric moieties of multiple bioactive compounds to create a new hybrid molecule with better affinity and effectiveness. In this regard, we created unique hybrid molecules out of diphenyl ether-linked fused pyrans and other heterocycles. The Michael reaction of 4,4'-oxydibenzaldehyde with malononitrile and various active methylene derivatives, as well as enaminone derivatives, produced the matching bis-fused pyrans and fused pyridines, both connected to a diphenyl ether moiety. Furthermore, the acid-catalyzed reaction of 4,4'-oxydibenzaldehyde with dimedone or β-naphthol produced the corresponding new bis(hexahydro-1H-xanthene-1,8-dione) and bis(14H-dibenzo[a,j]xanthene). The processes by which the target products are formed were also examined.