Mindfulness meditation training (MMT) reliably reduces stress and anxiety while also improving attention. The primary aim of this study was to investigate the relationship between MMT, stress and anxiety reduction, and its impact upon improvements in attention on the behavioral and neuronal levels. As a second aim, we sought to explore any relationship between MMT, attention, and modified states of mind such as flow. 118 healthy, meditation-naïve, participants were either assigned to a 31-day, web-based, MMT or an active control, health training (HT). Participants underwent functional magnetic resonance imaging while performing the attention network test (ANT) to assess functional and behavioural attentional changes, diffusion tensor imaging (DTI) to assess microstructural neuronal changes and completed relevant questionnaires to explore changes in psychological outcomes. Results confirmed a reduction in perceived stress and anxiety levels in the MMT group and significant improvements in the overall reaction time during the ANT, albeit no specific effects on the attentional components were observed. No statistically significant changes were found in the HT group. Interestingly, a significant group-by-time interaction was seen in flow experience. Functional data exhibited an increased activity in the superior frontal gyrus, posterior cingulate cortex, and right hippocampus during the alerting condition of the ANT after the MMT; decreased stress and trait anxiety were significantly correlated with the activation in the right hippocampus, and increased flow was also significantly correlated with all the aforementioned areas. DTI data showed increased fractional anisotropy values in the right uncinate fasciculus indicating white matter microarchitecture improvement between the right hippocampus and frontal areas of the brain. This study, therefore, demonstrates the effectiveness of web-based MMT on overall well-being and attentional performance, while also providing insight into the relationship between psychological outcomes, attention, and neuroplastic changes.
© 2023. The Author(s).