In birds, maternal hormones deposited into eggs in response to environmental stimuli can impact offspring phenotype. Although less studied, environmental conditions can also influence females' incubation behavior, which might play a role in regulating embryo exposure to maternal hormones through changes in incubation temperature that affect the activity of the enzymes responsible for converting testosterone (T) to 5α-dihydrotestosterone (DHT) or estradiol. Here, we tested the hypothesis that the initial T content of the yolk and incubation temperature determine exposure to T metabolites during early embryo development. In the Japanese quail (Coturnix japonica), we experimentally manipulated yolk T and incubation temperature (38° C versus 36° C) and analyzed DHT and estradiol titers on day four of incubation. We found that eggs with experimentally increased T and those incubated at 36° C showed higher DHT concentration in egg yolk (with no synergistic effect of the two treatments). Estradiol titers were not affected by T manipulation or incubation temperature. Our study suggests that incubation temperature influences DHT titers and may act as an understudied source of maternal influence on offspring phenotype.
Keywords: DHT; Incubation behavior; Maternal care; Non-hormonal maternal effects.
Copyright © 2023 Elsevier Inc. All rights reserved.