Bone marrow failure syndromes are rare disorders characterized by bone marrow hypocellularity and resultant peripheral cytopenias. The most frequent form is acquired, so-called aplastic anemia or idiopathic aplastic anemia, an auto-immune disorder frequently associated with paroxysmal nocturnal hemoglobinuria, whereas inherited bone marrow failure syndromes are related to pathogenic germline variants. Among newly identified germline variants, GATA2 deficiency and SAMD9/9L syndromes have a special significance. Other germline variants impacting biological processes, such as DNA repair, telomere biology, and ribosome biogenesis, may cause major syndromes including Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, and Shwachman-Diamond syndrome. Bone marrow failure syndromes are at risk of secondary progression towards myeloid neoplasms in the form of myelodysplastic neoplasms or acute myeloid leukemia. Acquired clonal cytogenetic abnormalities may be present before or at the onset of progression; some have prognostic value and/or represent somatic rescue mechanisms in inherited syndromes. On the other hand, the differential diagnosis between aplastic anemia and hypoplastic myelodysplastic neoplasm remains challenging. Here we discuss the value of cytogenetic abnormalities in bone marrow failure syndromes and propose recommendations for cytogenetic diagnosis and follow-up.
Keywords: Aplastic anemia; BMFS; Cytogenetics; DC/TBDs; Diamond-Blackfan anemia; Fanconi anemia; GATA2 deficiency; IBMFS; PNH; SAMD9/SAMD9L syndrome; Shwachman-Diamond syndrome.
Copyright © 2023. Published by Elsevier Masson SAS.