Introduction: Several implant manufacturers have developed ultra-porous metal substrate acetabular components recently. Despite this, data on clinical and radiographic outcomes remain limited. Our study evaluated postoperative patient-reported outcome measures (PROMs) and radiographic analyses in patients fitted with a novel acetabular porous-coated component.
Methods: A total of 152 consecutive patients underwent a total hip arthroplasty by a single orthopaedic surgeon. All patients underwent surgery utilizing the same CT-scan based robotic-assisted device with the same porous cementless acetabular shell. They received standardized postoperative physical therapy, rehabilitation, and pain protocols. Preoperatively, first postoperative visit, 6-months, 1-year, and 2-years, patients were evaluated based on Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain, physical function, and total scores; 2) Patient-Reported Outcomes Measurement Information System (PROMIS)-10 physical and mental scores; 3) Hip Disability and Osteoarthritis Outcome Score (HOOS)-Jr scores; as well as 4) acetabular component positions and 5) evidence of acetabular component loosening.
Results: Significant improvements were observed by 6 months in WOMAC pain, physical function, and total scores (p < 0.05), maintained at 1 and 2 years. PROMIS-10 physical scores also improved significantly from preoperative to 6 months postoperative and remained so at 1 and 2 years postoperative (p < 0.05). No significant changes were found in PROMIS-10 mental scores. HOOS-Jr scores significantly improved from preoperative to 6 months postoperative and remained so through 2 years (p < 0.05). At 6 months, slight changes were noted in abduction angle and horizontal and vertical offset. Radiolucencies, initially found in 3 shells, reduced to 1 shell with 2 new radiolucencies by 6 months, and remained stable with no subsequent operative interventions. At 1 year and 2 years, no radiographic abnormalities were noted, including complete resolution of prior radiolucencies as well as stable components.
Conclusion: This porous cementless acetabular shell, implanted with CT-scan-based robotic-assisted techniques, demonstrated excellent postoperative PROMs at 2 years. Stable radiolucencies suggest good component stability. The early stable clinical and radiographic results suggest promising long-term outcomes with this device.
Level of evidence: III (retrospective cohort study).
Keywords: Acetabular components; Acetabular porous-coated component; Clinical outcomes; Orthopaedic surgeon; Postoperative patient reported outcome measures; Radiographic outcomes; Total hip arthroplasty; Ultra-porous metal substrate.
© 2023 Published by Elsevier B.V. on behalf of Professor P K Surendran Memorial Education Foundation.