Ryegrass is one such cereal that has been underutilized in human nutrition despite its high nutritional and functional value due to the presence of phytochemicals and dietary fibers. Exploiting ryegrass for human consumption is an exciting option, especially for countries that do not produce wheat, as it is easily adaptable and overgrows, making it economically viable. This study evaluated the nutritional content of γ-aminobutyric acid and bioactive compounds (total soluble phenolic compounds) and the physicochemical and technological properties of partially substituting maize flour (MF) with sprouted whole ryegrass flour (SR) in developing extrusion-cooked breakfast cereals. A completely randomized design with substitutions ranging from 0 to 20% of MF with SR was employed as the experimental strategy (p < 0.05). Partial incorporation of SR increased the content of γ-aminobutyric acid and total soluble phenolic compounds. Using sprouted grains can adversely affect the technological quality of extruded foods, mainly due to the activation of the amylolytic enzymes. Still, ryegrass, with its high dietary fiber and low lipid content, mitigates these negative effects. Consequently, breakfast cereals containing 4 and 8% SR exhibited better physicochemical properties when compared to SR12, SR16, SR20, and USR10, presenting reduced hardness and increased crispness, and were similar to SR0. These results are promising for ryegrass and suggest that combining the age-old sprouting process with extrusion can enhance the nutritional quality and bioactive compound content of cereal-based breakfast products while maintaining some technological parameters, especially crispiness, expansion index, water solubility index, and firmness, which are considered satisfactory.
Keywords: bioprocess; cereal; extrusion; germination; healthiness; phytochemicals.