We report the stereodynamic control of D3+ formation from the laser-induced bimolecular reaction in a weakly bound D2-D2 dimer via impulsive molecular alignment. Using a linearly polarized moderately intense femtosecond pump pulse, the D2 molecules in the dimer were prealigned prior to the bimolecular reaction triggered by a delayed probe pulse. The rotationally excited D2 in the dimer was observed to rotate freely as if it were a monomer. It was demonstrated that the yield of photoreaction product D3+ is increased or decreased when the molecular axis of D2 is parallel or perpendicular to the probe laser polarization, respectively. The underlying physics of this steric effect is the alignment-dependent bond cleavage of D2+ in the dimer induced by a photon-coupled parallel transition.