Enhancement in Thermoelectric Performance in Ti-doped Yb0.4Co4Sb12 Skutterudites via Carrier Optimization and Phonon Anharmonicity

ACS Appl Mater Interfaces. 2023 Nov 2. doi: 10.1021/acsami.3c09768. Online ahead of print.

Abstract

Yb0.4Co4Sb12, being a well-studied system, has shown notably high thermoelectric performance due to the Yb filler atom-driven large concentration of charge carriers and lower value of thermal conductivity. In this work, the thermoelectric performance of YbzCo4-xTixSb12 (where z = 0, x = 0 and z = 0.4, x = 0, 0.04, and 0.08) upon Ti doping prepared by the melt-quenched-annealing followed by spark plasma sintering (SPS) has been studied in the temperature range of 300-700 K. Addition of Yb and doping of donor Ti at the Co site simultaneously increase the electrical conductivity to 1453.5 S/cm at 300 K, which ultimately boosts the power factor as high as ∼4.3 mW/(m·K2) at 675 K in Yb0.4Co3.96Ti0.04Sb12. Adversely, a significant reduction in thermal conductivity is obtained from ∼7.69 W/(m·K) (Co4Sb12) to ∼3.50 W/(m·K) (Yb0.4Co3.96Ti0.04Sb12) at ∼300 K. As a result, the maximum zT is achieved as ∼0.85 at 623 K with high hardness of 584 HV for the composition of Yb0.4Co3.96Ti0.04Sb12, which demonstrates it to be an efficient material suitable for intermediate temperature thermoelectric applications.

Keywords: Co4Sb12 skutterudites; Ti doping; Yb filling; high zT; large power factor.