Emotional contagion, the transmission of emotions within a group, has been extensively studied in mammals but remains largely unexplored in fish. This study aims to investigate whether emotional contagion, specifically in terms of low and high anxiety levels, can be evoked in zebrafish. This freshwater species has been gaining momentum due to its high genetic homology to humans and complex behavioral repertoire, making it well-suited for exploring social behavior. Our hypothesis posits that zebrafish have the ability to transmit positive and negative emotions to one another through visual cues only and that this transmission is robust over time. To test this, we employed a virtual demonstrator fish approach, where videos of zebrafish exhibiting either high or low geotactic behavior were shown to live zebrafish. Geotaxis, the tendency of a fish to spend more time at the bottom of the tank, is a sensitive measure of anxiety, with high geotactic behavior corresponding to high anxiety levels and vice versa. Our findings indicate that the virtual demonstrator successfully transmitted emotional states to the live fish, as evidenced by changes in the time spent at the bottom of the tank, linear acceleration, and fast-turning maneuvers, metrics that quantify anxiety-like behaviors such as geotaxis and erratic movements. Additionally, we conducted a causal analysis using a transfer entropy approach, revealing a significant flow of information from the virtual demonstrator fish to the live fish, indicating the efficacy and potential of this approach in studying emotional contagion. This study provides additional empirical evidence of how visual cues alone from a virtual demonstrator exhibiting high or low anxious behavior can elicit similar behavioral states in bystander fish, highlighting the potential for emotional contagion beyond mammalian and avian models.
Keywords: Behavior; Contagion; Danio rerio; Emotion; Virtual demonstrator.
Copyright © 2023 Elsevier B.V. All rights reserved.