Diversity at single nucleotide to pangenome scales among sulfur cycling bacteria in salt marshes

Appl Environ Microbiol. 2023 Nov 29;89(11):e0098823. doi: 10.1128/aem.00988-23. Epub 2023 Oct 26.

Abstract

Salt marshes are known for their significant carbon storage capacity, and sulfur cycling is closely linked with the ecosystem-scale carbon cycling in these ecosystems. Sulfate reducers are key for the decomposition of organic matter, and sulfur oxidizers remove toxic sulfide, supporting the productivity of marsh plants. To date, the complexity of coastal environments, heterogeneity of the rhizosphere, high microbial diversity, and uncultured majority hindered our understanding of the genomic diversity of sulfur-cycling microbes in salt marshes. Here, we use comparative genomics to overcome these challenges and provide an in-depth characterization of sulfur-cycling microbial diversity in salt marshes. We characterize communities across distinct sites and plant species and uncover extensive genomic diversity at the taxon level and specific genomic features present in MAGs affiliated with uncultivated sulfur-cycling lineages. Our work provides insights into the partnerships in salt marshes and a roadmap for multiscale analyses of diversity in complex biological systems.

Keywords: diversity-generating retroelement; pangenomics; single-nucleotide polymorphism; site-specific genetic diversity; sulfate-reducing bacteria; sulfur-oxidizing bacteria.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacteria / genetics
  • Carbon
  • Ecosystem*
  • Nucleotides
  • Plants
  • Sulfur
  • Wetlands*

Substances

  • Nucleotides
  • Sulfur
  • Carbon