Surface restructuring Prussian blue analog-derived bimetallic CoFe phosphides by N-doped graphene quantum dots for electroactive hydrogen evolving catalyst

J Colloid Interface Sci. 2024 Jan 15;654(Pt A):677-687. doi: 10.1016/j.jcis.2023.10.028. Epub 2023 Oct 12.

Abstract

As a crucial stage of electrochemical water splitting, hydrogen evolution reaction (HER) favour catalyst to attain rapid kinetics for its broader application, alternating Pt in the acidic environment. Transition metal phosphides (TMPs) are one kind of earth-abundant, nonprecious-based catalyst which has been classified as a viable alternative and active for HER. While the performance remains inferior to Pt which primarily targets durability under high current density, pinpointing the reconfiguration strategy would be critical to their catalytic competency. Herein, we reported engineered N-doped graphene quantum dots (NGQD) on the surface of bimetallic CoFe phosphide (CoFeP) derived from cobalt iron Prussian blue analogue (CoFePBA) as an efficient HER. By introducing the NGQD, the surface architect and electronic state of the transition metal are altered through an adjusted electronic configuration and thus, improving the electrocatalytic activity for HER. The X-ray absorption spectroscopy (XAS) highlighting the role of NGQD, which successfully induced the electron density of Co atoms, further expedites its conductivity and electroactivity. The optimized NGQD/CoFeP substantially surpasses an overpotential of 70 mV (vs. RHE) at the current density of 10 mA cm-2 in 0.5 M H2SO4. Furthermore, the NGQD/CoFeP maintains its exceptional stability under an extremely high current density of 600 mA cm-2 after 12 h of continuous operation. Our findings show that NGQD/CoFeP might demonstrate as a viable alternative to the conventional Pt electrocatalyst in commercial water splitting for hydrogen generation.

Keywords: Electrocatalyst; Hydrogen evolution reaction; N-doped graphene quantum dots; Prussian blue analogues; Transition metal phosphides; X-ray absorption spectroscopy.