The surgical resection of solid tumours can be enhanced by fluorescence-guided imaging. However, variable tumour uptake and incomplete clearance of fluorescent dyes reduces the accuracy of distinguishing tumour from normal tissue via conventional fluorescence intensity-based imaging. Here we show that, after systemic injection of the near-infrared dye indocyanine green in patients with various types of solid tumour, the fluorescence lifetime (FLT) of tumour tissue is longer than the FLT of non-cancerous tissue. This tumour-specific shift in FLT can be used to distinguish tumours from normal tissue with an accuracy of over 97% across tumour types, and can be visualized at the cellular level using microscopy and in larger specimens through wide-field imaging. Unlike fluorescence intensity, which depends on imaging-system parameters, tissue depth and the amount of dye taken up by tumours, FLT is a photophysical property that is largely independent of these factors. FLT imaging with indocyanine green may improve the accuracy of cancer surgeries.
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.