Stabilized Li-Rich Layered Oxide Cathode by a Spontaneously Formed Yb and Oxygen-Vacancy Rich Layer on the Surface

Small. 2024 Feb;20(8):e2307419. doi: 10.1002/smll.202307419. Epub 2023 Oct 11.

Abstract

Li-rich layered oxides (LLOs) are among the most promising cathode materials with high theoretical specific capacity (>250 mAh g-1 ). However, capacity decay and voltage hysteresis due tostructural degradation during cycling impede the commercial application of LLOs. Surface engineering and element doping are two methods widely applied tomitigate the structural degradation. Here, it is found that trace amount lanthanide element Yb doping can spontaneously form a surficial Yb-rich layer with high density of oxygen vacancy on the LLO-0.3% Yb (Li1.2 Mn0.54 Co0.13-x Ybx Ni0.13 O2 where x = 0.003) cathodes, which mitigating lattice oxygen loss and the non-preferred layered-to-spinel-to-rock salt tri-phase transition. Meanwhile, there are also some Yb ions doped into the lattice of LLO, which enhance the binding energy with oxygen and stabilize the lattice in grain interior during cycling. The dual effects of Yb doping greatly mitigate the structure degradation during cycling, and facilitate fast diffusion of lithium ions. As a result, the LLO-0.3% Yb sample achieves significantly improved cycling stability, with a capacity retention of 84.69% after 100 cycles at 0.2 C and 84.3% after 200 cycles at 1 C. These finding shighlight the promising rare element doping strategy that can have both surface engineering and doping effects in preparing LLO cathodes with high stability.

Keywords: Li-rich layered oxides; intrinsic oxygen-vacancy; lanthanide elements; minor doping strategy; surface engineering.