Identification of a Novel Hypoxia-induced Inflammatory Cell Death Pathway

bioRxiv [Preprint]. 2023 Sep 26:2023.08.05.552118. doi: 10.1101/2023.08.05.552118.

Abstract

Hypoxic cancer cells resist many anti-neoplastic therapies and can seed recurrence. We found previously that PTP1B deficiency promotes HER2+ breast cancer cell death in hypoxia by activating RNF213, an ∼600kDa protein containing AAA-ATPase domains and two ubiquitin ligase domains (RING and RZ) that also is implicated in Moyamoya disease (MMD), lipotoxicity, and innate immunity. Here we report that PTP1B and ABL1/2 reciprocally control RNF213 phosphorylation on tyrosine-1275. This phosphorylation promotes RNF213 oligomerization and RZ domain activation. The RZ domain ubiquitylates CYLD/SPATA2, and together with the LUBAC complex, induces their degradation. Decreased CYLD/SPATA2 causes NF-κB activation, which together with hypoxia-induced ER-stress triggers GDSMD-dependent pyroptosis. Mutagenesis experiments show that the RING domain negatively regulates the RZ domain. CYLD -deleted HER2+ cell-derived xenografts phenocopy the effects of PTP1B deficiency, and reconstituting RNF213 knockout lines with RNF213 mutants shows that the RZ domain mediates PTP1B-dependent tumor cell death. Our results identify a novel, potentially targetable PTP1B/RNF213/CYCLD/SPATA pathway critical for controlling inflammatory cell death in hypoxic tumors that could be exploited to target hypoxic tumor cells, potentially turning "cold" tumors "hot". Our findings also reveal new insights into RNF213 regulation, and have potentially important implications for the pathogenesis of MMD, atherosclerosis, and inflammatory and auto-immune disorders.

Publication types

  • Preprint