Detecting organelle-specific activity of potassium channels with a DNA nanodevice

Nat Biotechnol. 2024 Jul;42(7):1065-1074. doi: 10.1038/s41587-023-01928-z. Epub 2023 Sep 21.

Abstract

Cell surface potassium ion (K+) channels regulate nutrient transport, cell migration and intercellular communication by controlling K+ permeability and are thought to be active only at the plasma membrane. Although these channels transit the trans-Golgi network, early and recycling endosomes, whether they are active in these organelles is unknown. Here we describe a pH-correctable, ratiometric reporter for K+ called pHlicKer, use it to probe the compartment-specific activity of a prototypical voltage-gated K+ channel, Kv11.1, and show that this cell surface channel is active in organelles. Lumenal K+ in organelles increased in cells expressing wild-type Kv11.1 channels but not after treatment with current blockers. Mutant Kv11.1 channels, with impaired transport function, failed to increase K+ levels in recycling endosomes, an effect rescued by pharmacological correction. By providing a way to map the organelle-specific activity of K+ channels, pHlicKer technology could help identify new organellar K+ channels or channel modulators with nuanced functions.

MeSH terms

  • DNA / genetics
  • DNA / metabolism
  • Endosomes / metabolism
  • Humans
  • Hydrogen-Ion Concentration
  • Organelles* / metabolism
  • Potassium / metabolism
  • Potassium Channels / metabolism

Substances

  • Potassium Channels
  • Potassium
  • DNA