Multiple regulatory pathways of T. chinensis to salt stress were identified through transcriptome data analysis. Tamarix chinensis (Tamarix chinensis Lour.) is a typical halophyte capable of completing its life cycle in soils with medium to high salinity. However, the mechanisms underlying its resistance to high salt stress are still largely unclear. In this study, transcriptome profiling analyses in different organs of T. chinensis plants in response to salt stress were carried out. A total number of 2280, 689, and 489 differentially expressed genes (DEGs) were, respectively, identified in roots, stems, and leaves, with more DEGs detected in roots than in stems and leaves. Gene Ontology (GO) term analysis revealed that they were significantly enriched in "biological processes" and "molecular functions". Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that "Beta-alanine metabolism" was the most differentially enriched pathway in roots, stems, and leaves. In pair-to-pair comparison of the most differentially enriched pathways, a total of 14 pathways, including 5 pathways in roots and leaves, 6 pathways in roots and stems, and 3 pathways in leaves and stems, were identified. Furthermore, genes encoding transcription factor, such as bHLH, bZIP, HD-Zip, MYB, NAC, WRKY, and genes associated with oxidative stress, starch and sucrose metabolism, and ion homeostasis, were differentially expressed with distinct organ specificity in roots, stems, and leaves. Our findings in this research provide a novel approach for exploring the salt tolerance mechanism of halophytes and identifying new gene targets for the genetic breeding of new plant cultivars with improved resistance to salt stress.
Keywords: Ion homeostasis; Oxidative stress; Salt resistance; Tamarix chinensis; Transcriptome.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.