This study was aimed to investigate the efficiency of poppy-pollen (PP) protein and peptides as carrier for spray-drying encapsulation of grape-seed oil (GSO). The composition of amino acids, functional properties and bioactivity (scavenging of DPPH, ABTS, OH, and nitric-oxide radicals, reducing power, total antioxidant, TBARS levels in O/W-emulsion, and chelation of Fe2+ and Cu2+ ions) of PP-protein were affected by the enzymolysis time. Partial enzymolysis (30 min) led to improved solubility, protein surface activity and increased physical stability of GSO/W emulsion (relative to creaming, aggregation and flocculation) during storage. Also, spray-dried emulsions with this type of carrier (H-30) had the highest production yield (~67 %), solubility (~92 %), flowability, encapsulation efficiency (~96 %), reconstitution ability (least size and EE changes), physical and oxidative stability. The evaluation of the chemical structures (FTIR) indicated the formation of hydrogen bonds between the cis-alkene groups of fatty acids and the hydroxyl groups of the amide A and B regions, as well as the trapping of oil in the carrier matrix. SEM images illustrated the effect of native protein carriers (particles with smooth, dents, and hollow surfaces with surface pores), partially (wrinkled and reservoir-type), and strongly (irregular structures, sticky and amorphous agglomerates) hydrolyzed peptides on the morphology of oily-particles. The results of this research indicate the usability of partially hydrolyzed poppy-pollen protein as a source of natural antioxidant, emulsifier, and carrier in the production, stabilization, and encapsulation of oxidation-sensitive bioactive components and emulsions.
Keywords: Carrier matrix; Enzymolysis; Oxidative stability; Poppy-pollen peptides; Spray-drying.
Copyright © 2023 Elsevier B.V. All rights reserved.