Many cancers arise from sites of chronic inflammation, which creates an inflammatory microenvironment surrounding the tumor. Inflammatory substances secreted by cells in the inflammatory environment can induce the proliferation and survival of cancer cells, thereby promoting cancer metastasis and angiogenesis. Therefore, it is important to identify the role of inflammatory factors in cancer progression. This review summarizes the signaling pathways and roles of C-reactive protein (CRP) in various cancer types, including breast, liver, renal, and pancreatic cancer, and the tumor microenvironment. Mounting evidence suggests the role of CRP in breast cancer, particularly in triple-negative breast cancer (TNBC), which is typically associated with a worse prognosis. Increased CRP in the inflammatory environment contributes to enhanced invasiveness and tumor formation in TNBC cells. CRP promotes endothelial cell formation and angiogenesis and contributes to the initiation and progression of atherosclerosis. In pancreatic and kidney cancers, CRP contributes to tumor progression. In liver cancer, CRP regulates inflammatory responses and lipid metabolism. CRP modulates the activity of various signaling molecules in macrophages and monocytes present in the tumor microenvironment, contributing to tumor development, the immune response, and inflammation. In the present review, we overviewed the role of CRP signaling pathways and the association between inflammation and cancer in various types of cancer. Identifying the interactions between CRP signaling pathways and other inflammatory mediators in cancer progression is crucial for understanding the complex relationship between inflammation and cancer.
Keywords: C-reactive protein; Inflammation; Tumor progression.