Purpose: Progressive myoclonic epilepsy, type 1A (EPM1, Unverricht-Lundborg disease), is a rare neurodegenerative autosomal recessive disorder characterized by stimulus-sensitive and action myoclonus and tonic-clonic epileptic seizures. Patients develop neurological symptoms, including ataxia, intention tremor, and dysarthria, over time, with relatively limited and nonspecific MRI atrophy findings. The effects of the disease on brain metabolism are largely unknown.
Method: Eighteen EPM1 patients (9 M, 9F) underwent clinical evaluation and neuropsychological testing, which included the assessment of intellectual ability, verbal memory, and psychomotor and executive functions. Magnetic resonance spectroscopy (MRS) and imaging (MRI) were performed on a 1.5 T MRI system. 2D MRS chemical shift imaging (CSI) maps (TE = 270) were obtained from the following regions of the brain: basal ganglia, thalamus, insula, splenium, and occipital white and gray matter, and N-acetyl-aspartate (NAA)-, choline (Cho)-, and lactate (Lac)-to-creatine (Cr) ratios were analyzed. Ten healthy age-and sex-matched subjects (5M, 5F) were used as controls for MRS.
Results: We found significant brain metabolic changes involving lactate, NAA, and choline, which are widespread in the basal ganglia, thalamic nuclei, insula, and occipital areas of EPM1 patients. Changes, especially in the right insula, basal ganglia, and thalamus, were associated with intellectual abilities and impairment of the psychomotor and executive functions of EPM1 patients.
Conclusion: Multiple brain metabolic alterations suggest the presence of neurodegeneration associated with EPM1 progression. The changes in metabolite ratios are associated with the neurocognitive dysfunction caused by the disease. However, the role of MRS findings in understanding pathophysiology of EPM1 warrants further studies.
Keywords: Brain; Cognition; EPM1; MRS; Neuropsychology; Spectroscopy.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.