Variation in the anti-oxidant, anti-obesity, and anti-cancer potential of different polarity extracts of saffron petals

3 Biotech. 2023 Jul;13(7):249. doi: 10.1007/s13205-023-03669-x. Epub 2023 Jun 25.

Abstract

The aim of the present study is to explore the anti-cancer, anti-oxidant, and anti-obesity potential of saffron petal extract (SPE) prepared through the hydro-alcoholic extraction method. Further partitioning was done with a series of polar and non-polar solvents to find out the most potent fraction of SPE against HCC. Organoleptic characterization depicted the color, odor, taste, and texture of the sub-fractions of SPE. Phytochemical, and pharmacognostic screening of these fractions revealed the presence of alkaloids, flavonoids, carbohydrates, glycosides, and phenols. The quantitative assessment demonstrated that the n-butanol fraction showed maximum phenolic (60.8 mg GAE eq./mg EW), and flavonoid (23.3 mg kaempferol eq./mg EW) content. The anti-oxidant study revealed that the n-butanol fraction exhibited the highest radical scavenging activity, as assessed through DPPH and FRAP assay. The results of the comparative cytotoxic potential also showed n-butanol as the best against liver cancer cells (Huh-7), as it has the least IC50 value (462.8 µg/ml). While other extracts viz., chloroform, n-hexane, ethyl acetate, and aqueous fractions have IC50 values as 1088, 733.9, 1043, and 1245 µg/ml, respectively. Additionally, the n-butanol fraction exerted the highest inhibitory potential against α-amylase (92.5%) and pancreatic lipase enzymes (78%), indicating its anti-adipogenesis property. Based on the current finding, we can deduce that the n-butanol fraction of SPE has better cytotoxic, anti-oxidant, and anti-obesity potential than the other fractions.

Supplementary information: The online version contains supplementary material available at 10.1007/s13205-023-03669-x.

Keywords: Liver cancer; Pancreatic lipase activity; Partitioning fractionation; Phytochemical screening; Reactive oxygen species (ROS).