Mitochondrial metabolism and dynamics in pancreatic beta cell glucose sensing

Biochem J. 2023 Jun 15;480(11):773-789. doi: 10.1042/BCJ20230167.

Abstract

Glucose-regulated insulin secretion becomes defective in all forms of diabetes. The signaling mechanisms through which the sugar acts on the ensemble of beta cells within the islet remain a vigorous area of research after more than 60 years. Here, we focus firstly on the role that the privileged oxidative metabolism of glucose plays in glucose detection, discussing the importance of 'disallowing' in the beta cell the expression of genes including Lactate dehydrogenase (Ldha) and the lactate transporter Mct1/Slc16a1 to restrict other metabolic fates for glucose. We next explore the regulation of mitochondrial metabolism by Ca2+ and its possible role in sustaining glucose signaling towards insulin secretion. Finally, we discuss in depth the importance of mitochondrial structure and dynamics in the beta cell, and their potential for therapeutic targeting by incretin hormones or direct regulators of mitochondrial fusion. This review, and the 2023 Sir Philip Randle Lecture which GAR will give at the Islet Study Group meeting in Vancouver, Canada in June 2023, honor the foundational, and sometimes under-appreciated, contributions made by Professor Randle and his colleagues towards our understanding of the regulation of insulin secretion.

Keywords: diabetes; glucose homeostasis; hormone secretion; insulin; mitochondria; pancreatic beta cell.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Glucose / metabolism
  • Insulin / metabolism
  • Insulin Secretion
  • Insulin-Secreting Cells* / metabolism
  • Mitochondria / metabolism

Substances

  • Insulin
  • Glucose