Context: The rationalization of acid rain formation steps is fundamental for mitigating its effects. It is believed the hydroxysulfinyl radical is an intermediate species for the production of atmospheric sulfuric acid. Two stable configurations HOSO and HSO2 have been reported for such a radical in the gas phase. This work aims at studying these isomers in the aqueous medium. The electrical and reactivity quantities - electronic chemical potential ([Formula: see text]), chemical hardness ([Formula: see text]), and electrophilicity ([Formula: see text]) - are here calculated and compared. Considering first solvation shells (15 H2O for HSO2 and 23 H2O for HOSO), an increase of 25% in the dipole moment of HSO2 was obtained, while the dipole moment of HOSO decreases in 11%. Both solvated isomers grow softer ([Formula: see text] decreases) contrasted to the gas phase.
Methods: HOSO and HSO2 are studied through a sequential Monte Carlo/quantum mechanics approach. Lennard-Jones plus the Coulomb potentials were used to represent intermolecular potential interaction in the frame of the DICE package. Molecular structure calculations were performed at CASPT2/aug - cc - pV(T + d)Z level of theory using the MOLPRO suite of programs.
Keywords: Liquid medium; Reactivity properties; Sulfur.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.