Effect of EPS production on the performance of membrane-based biofilm reactors

Water Res. 2023 Jul 15:240:120101. doi: 10.1016/j.watres.2023.120101. Epub 2023 May 19.

Abstract

This study explored the effect of extracellular polymeric substance (EPS) production on the performance of membrane-based biofilm reactors. Changing EPS production was induced by eliminating one of the main EPS polysaccharides, i.e., Pel. The studies were carried out using a pure culture of either Pseudomonas aeruginosa or an isogenic P. aeruginosa mutant that was unable to produce the Pel polysaccharide. The biofilm cell density for both strains was compared to confirm the Pel deletion mutant decreased overall EPS production in a bioreactor system. When the Pel-deficient mutant was grown as a biofilm, its cell density, i.e., ratio of cells/(cells + EPS), was 74 % higher than the wild type, showing EPS production was reduced by eliminating pel production. The growth kinetics were determined for both strains. The Pel-deficient mutant had a maximum specific growth rate (μ^) that was 14% higher than the wild type. Next, the effects of EPS reduction on reactor performance were assessed for a membrane aerated biofilm reactor (MABR) and a membrane bioreactor (MBR). For the MABR, the organic removal with the Pel-deficient mutant was around 8% higher than for the wild type. For the MBR, the time to reach the fouling threshold was 65 % greater for the Pel-deficient mutant than for the wild type. These results suggest that amount of EPS production can have significant effects on bacterial growth kinetics and bacterial cell density, which in turn can affect the performance of the membrane-based biofilm reactors. In both cases, lower EPS production correlated with more efficient treatment processes.

Keywords: Biofilms; EPS; Genetically engineered organisms (GEO); MABR; MBR; Pel.

MeSH terms

  • Bacteria
  • Biofilms*
  • Bioreactors / microbiology
  • Extracellular Polymeric Substance Matrix*
  • Pseudomonas aeruginosa / genetics