Background: The association between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic variation and breakthrough infection is not well defined among persons with Delta variant SARS-CoV-2 infection.
Methods: In a retrospective cohort, we assessed whether individual nonlineage defining mutations and overall genomic variation (including low-frequency alleles) were associated with breakthrough infection, defined as SARS-CoV-2 infection after coronavirus disease 2019 primary vaccine series. We identified all nonsynonymous single-nucleotide polymorphisms, insertions, and deletions in SARS-CoV-2 genomes with ≥5% allelic frequency and population frequency of ≥5% and ≤95%. Using Poisson regression, we assessed the association with breakthrough infection for each individual mutation and a viral genomic risk score.
Results: Thirty-six mutations met our inclusion criteria. Among 12 744 persons infected with Delta variant SARS-CoV-2, 5949 (47%) were vaccinated and 6795 (53%) were unvaccinated. Viruses with a viral genomic risk score in the highest quintile were 9% more likely to be associated with breakthrough infection than viruses in the lowest quintile, but including the risk score improved overall predictive model performance (measured by C statistic) by only +0.0006.
Conclusions: Genomic variation within SARS-CoV-2 Delta variant was weakly associated with breakthrough infection, but several potential nonlineage defining mutations were identified that might contribute to immune evasion by SARS-CoV-2.
Keywords: SARS-CoV-2; genomic variation; immune evasion.
© The Author(s) 2023. Published by Oxford University Press on behalf of Infectious Diseases Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.