Genome assemblies are increasingly being used to identify adaptive genetic variation that can help prioritize the population management of protected species. This approach may be particularly relevant to species like Blainville's horned lizard, Phrynosoma blainvillii, due to its specialized diet on noxious harvester ants, numerous adaptative traits for avoiding predation (e.g. cranial horns, dorsoventrally compressed body, cryptic coloration, and blood squirting from the orbital sinuses), and status as Species of Special Concern in California. Rangewide decline since the early 20th century, the basis of its conservation status, has been driven mainly by habitat conversion, over-collecting, and invasion of a non-native ant that displaces its native ant prey base. Here, we report on a scaffold-level genome assembly for P. blainvillii as part of the California Conservation Genomics Project (CCGP), produced using Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology. The de novo assembly has 78 scaffolds, a total length of ~2.21 Gb, a scaffold N50 length of ~352 Mb, and BUSCO score of 97.4%. This is the second species of Phrynosoma for which a reference genome has been assembled and represents a considerable improvement in terms of contiguity and completeness. Combined with the landscape genomics data being compiled by the CCGP, this assembly will help strategize efforts to maintain and/or restore local genetic diversity, where interventions like genetic rescue, translocation, and strategic land preservation may be the only means by which P. blainvillii and other low-vagility species can survive in the fragmented habitats of California.
Keywords: California Conservation Genomics Project; Phyrnosomatidae; conservation genetics; genome assembly; specialist.
Published by Oxford University Press on behalf of The American Genetic Association 2023.