Single-nucleus multi-omics of human stem cell-derived islets identifies deficiencies in lineage specification

Nat Cell Biol. 2023 Jun;25(6):904-916. doi: 10.1038/s41556-023-01150-8. Epub 2023 May 15.

Abstract

Insulin-producing β cells created from human pluripotent stem cells have potential as a therapy for insulin-dependent diabetes, but human pluripotent stem cell-derived islets (SC-islets) still differ from their in vivo counterparts. To better understand the state of cell types within SC-islets and identify lineage specification deficiencies, we used single-nucleus multi-omic sequencing to analyse chromatin accessibility and transcriptional profiles of SC-islets and primary human islets. Here we provide an analysis that enabled the derivation of gene lists and activity for identifying each SC-islet cell type compared with primary islets. Within SC-islets, we found that the difference between β cells and awry enterochromaffin-like cells is a gradient of cell states rather than a stark difference in identity. Furthermore, transplantation of SC-islets in vivo improved cellular identities overtime, while long-term in vitro culture did not. Collectively, our results highlight the importance of chromatin and transcriptional landscapes during islet cell specification and maturation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cell Differentiation / genetics
  • Chromatin / genetics
  • Chromatin / metabolism
  • Humans
  • Insulins* / metabolism
  • Islets of Langerhans*
  • Multiomics
  • Pluripotent Stem Cells* / metabolism

Substances

  • Chromatin
  • Insulins