The photopyroelectric effect in ferroelectrics has shown great potential for application in infrared detection and imaging. One particular subclass is broadband with dielectric bistability, which allows for large pyroelectric figures-of-merit (FOMs). Herein, an improper high-Tc perovskite ferroelectric, (IA)2 (EA)2 Pb3 Cl10 (1, where IA is isoamylammonium and EA is ethylammonium) is presented, in which spontaneous polarization (Ps ) stems from the dynamic ordering of organic cations and the tilting of distorted PbCl6 octahedra. Notably, 1 displays unusual dielectric bistability with small variations in the temperature-dependent dielectric constants near Tc = 392 K; this bistable attribute endows large pyroelectric FOMs with peak voltage efficiency (FV = 1.7×10-2 cm2 µC-1 ) and sensitivity (FD = 3.9×10-4 Pa-1/2 ). These FV and FD parameters, beyond those of their proper counterparts, make 1 a promising candidate for infrared photodetection. As expected, the broadband photopyroelectric effects observed in 1 covered the ultraviolet to infrared-II spectral region (266-1950 nm). Such Ps -directed photoactivities overcome the optical bandgap limitation and allow for wide-wave photodetection. As an innovative study on improper ferroelectricity, light is shaded here on the targeted engineering of new electrically ordered candidate materials for smart optoelectronic devices.
Keywords: broadband photopyroelectric effects; dielectric bistability; hybrid perovskites; improper ferroelectrics.
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.