Cerebral ischemia-reperfusion injury (CIRI) is a complex pathological condition with high mortality. In particular, reperfusion can stimulate overproduction of reactive oxygen species (ROS) and activation of inflammation, causing severe secondary injuries to the brain. Despite tremendous efforts, it remains urgent to rationally design antioxidative agents with straightforward and efficient ROS scavenging capability. Herein, a potent antioxidative agent was explored based on iridium oxide nano-agglomerates (Tf-IrO2 NAs) via the facile transferrin (Tf)-templated biomineralization approach, and innovatively applied to treat CIRI. Containing some small-size IrO2 aggregates, these NAs possess intrinsic hydroxyl radicals (•OH)-scavenging ability and multifarious enzyme activities, such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx). Moreover, they also showed improved blood-brain barrier (BBB) penetration and enhanced accumulation in the ischemic brain via Tf receptor-mediated transcytosis. Therefore, Tf-IrO2 NAs achieved robust in vitro anti-inflammatory and cytoprotection effects against oxidative stress. Importantly, mice were effectively protected against CIRI by enhanced ROS scavenging activity in vivo, and the therapeutic mechanism was systematically verified. These findings broaden the idea of expanding Ir-based NAs as potent antioxidative agents to treat CIRI and other ROS-mediated diseases. STATEMENT OF SIGNIFICANCE: (1) The ROS-scavenging activities of IrO2 are demonstrated comprehensively, which enriched the family of nano-antioxidants. (2) The engineering Tf-IrO2 nano-agglomerates present unique multifarious enzyme activities and simultaneous transferrin targeting and BBB crossing ability for cerebral ischemia-reperfusion injury therapy. (3) This work may open an avenue to enable the use of IrO2 to alleviate ROS-mediated inflammatory and brain injury diseases.
Keywords: Blood-brain barrier; Cerebral ischemia-reperfusion injury; Iridium agglomerates; Multi-enzyme activities; Reactive oxygen species.
Copyright © 2023. Published by Elsevier Ltd.