8-oxoA, a major oxidation product of adenosine, is a mispairing, mutagenic lesion that arises in DNA and RNA when •OH radicals or one-electron oxidants attack the C8 adenine atom or polymerases misincorporate 8-oxo(d)ATP. The danger of 8-oxoA is underscored by the existence of dedicated cellular repair machinery that explicitly excise it from DNA, the attenuation of translation induced by 8-oxoA-mRNA or damaged ribosomes, and its potency as a TLR7 agonist. Here we present the discovery, purification, and biochemical characterization of a new mouse IgGk1 monoclonal antibody (6E4) that specifically targets 8-oxoA. Utilizing an AchE-based competitive ELISA assay, we demonstrate the selectivity of 6E4 for 8-oxoA over a plethora of canonical and chemically modified nucleosides including 8-oxoG, A, m6A, 2-oxoA, and 5-hoU. We further show the ability of 6E4 to exclusively recognize 8-oxoA in nucleoside triphosphates (8-oxoATP) and DNA/RNA oligonucleotides containing a single 8-oxoA. 6E4 also binds 8-oxoA in duplex DNA/RNA antigens where the lesion is either paired correctly or base mismatched. Our findings define the 8-oxoAde nucleobase as the critical epitope and indicate mAb 6E4 is ideally suited for a broad range of immunological applications in nucleic acid detection and quality control.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.