For shade-intolerant plants, a reduction in the red/far-red (R:FR) light ratio signals the close proximity of competitors and triggers shade-avoidance syndrome (SAS). Auxin, brassinosteroid, gibberellin and some transcriptional regulators have been reported to regulate shade-induced hypocotyl elongation. However, little is understood regarding the coordination of these multiple regulatory pathways. Here, combining time-lapse growth rates and transcriptomic data, we demonstrate that auxin and brassinosteroid affect two phases of shade-induced rapid growth, whereas gibberellin mainly contributes to the second rapid growth phase. PHYTOCHROME-INTERACTING FACTOR 7 (PIF7) acts earlier than other PIFs. PIF4 and PIF5 modulate the second rapid growth phase. LONG HYPOCOTYL IN FAR-RED 1 (HFR1) and PIF3-LIKE 1 (PIL1) modulate two rapid growth phases. Our results reveal that hormonal and transcriptional regulatory programs act together to coordinate dynamic hypocotyl changes in an immediate response to a shade signal and provide a novel understanding of growth kinetics in a changing environment.
Supplementary information: The online version contains supplementary material available at 10.1007/s43657-022-00044-3.
Keywords: Auxin; Brassinosteroid; Elongation; Gibberellin; Hypocotyl; Shade avoidance syndrome.
© International Human Phenome Institutes (Shanghai) 2022.