Over time, the antigenic evolution of emerging variants of SARS-CoV-2 has demanded the development of potential protective vaccines. Administration of additional doses of current vaccines based on the WT spike protein may boost immunity, but their effectiveness has dwindled for patients with more recent variants. Here, we studied the neutralization activity of post-WT strain-based vaccination and a structural simulation in-silico based on the interactions of the RBD-hACE2 as the key to initiating infection among the VOCs of SARS-CoV-2. Our data display shows that WT sera showed a markedly greater reduction in Delta and Omicron, suggesting that the Wuhan-based vaccines may be more susceptible to breakthrough and new VOCs. According to the MD simulation, mutations of Omicron result in a significant change in the variant charge distribution throughout the binding interface that consequently alters the critical interface electrostatic potential in comparison to other variants. This observation provides new insights into immunization policy and next-generation vaccine development.
Keywords: Molecular dynamic simulations; Neutralizing antibody; SARS-CoV-2; Vaccine; Variants of concern.
© 2023 Published by Elsevier Ltd.