1,4-Dioxane removal in nitrifying sand filters treating domestic wastewater: Influence of water matrix and microbial inhibitors

Chemosphere. 2023 May:324:138304. doi: 10.1016/j.chemosphere.2023.138304. Epub 2023 Mar 3.

Abstract

1,4-Dioxane is a recalcitrant pollutant in water and is ineffectively removed during conventional water and wastewater treatment processes. In this study, we demonstrate the application of nitrifying sand filters to remove 1,4-dioxane from domestic wastewater without the need for bioaugmentation or biostimulation. The sand columns were able to remove 61 ± 10% of 1,4-dioxane on average (initial concentration: 50 μg/L) from wastewater, outperforming conventional wastewater treatment approaches. Microbial analysis revealed the presence of 1,4-dioxane degrading functional genes (dxmB, phe, mmox, and prmA) to support biodegradation being the dominant degradation pathway. Adding antibiotics (sulfamethoxazole and ciprofloxacin), that temporarily inhibited the nitrification process during the dosing period, showed a minor effect in 1,4-dioxane removal (6-8% decline, p < 0.05), suggesting solid resilience of the 1,4-dioxane-degrading microbial community in the columns. Columns amended with sodium azide significantly (p < 0.05) depressed 1,4-dioxane removal in the early stage of dosing but followed by a gradual increase of the removal over time to >80%, presumably due to a shift in the microbial community toward azide-resistant 1,4-dioxane degrading microbes (e.g., fungi). This study demonstrated for the first time the resilience of the 1,4-dioxane-degrading microorganisms during antibiotic shocks, and the selective enrichment of efficient 1,4-dioxane-degrading microbes after azide poisoning. Our observation could provide insights into designing better 1,4-dioxane remediation strategies in the future.

Keywords: 1,4-Dioxane; Biodegradation; Nitrogen removing biofilter; Onsite wastewater system; Sand filter.

MeSH terms

  • Anti-Bacterial Agents
  • Azides
  • Dioxanes / metabolism
  • Wastewater*
  • Water
  • Water Pollutants, Chemical* / metabolism

Substances

  • Wastewater
  • 1,4-dioxane
  • Water
  • Azides
  • Dioxanes
  • Anti-Bacterial Agents
  • Water Pollutants, Chemical