Cyanovirin-N binds to select SARS-CoV-2 spike oligosaccharides outside of the receptor binding domain and blocks infection by SARS-CoV-2

Proc Natl Acad Sci U S A. 2023 Mar 7;120(10):e2214561120. doi: 10.1073/pnas.2214561120. Epub 2023 Feb 28.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped positive stranded RNA virus which has caused the recent deadly pandemic called COVID-19. The SARS-CoV-2 virion is coated with a heavily glycosylated Spike glycoprotein which is responsible for attachment and entry into target cells. One, as yet unexploited strategy for preventing SARS-CoV-2 infections, is the targeting of the glycans on Spike. Lectins are carbohydrate-binding proteins produced by plants, algae, and cyanobacteria. Some lectins can neutralize enveloped viruses displaying external glycoproteins, offering an alternative therapeutic approach for the prevention of infection with virulent β-coronaviruses, such as SARS-CoV-2. Here we show that the cyanobacterial lectin cyanovirin-N (CV-N) can selectively target SARS-CoV-2 Spike oligosaccharides and inhibit SARS-CoV-2 infection in vitro and in vivo. CV-N neutralizes Delta and Omicron variants in vitro better than earlier circulating viral variants. CV-N binds selectively to Spike with a Kd as low as 15 nM and a stoichiometry of 2 CV-N: 1 Spike but does not bind to the receptor binding domain (RBD). Further mapping of CV-N binding sites on Spike shows that select high-mannose oligosaccharides in the S1 domain of Spike are targeted by CV-N. CV-N also reduced viral loads in the nares and lungs in vivo to protect hamsters against a lethal viral challenge. In summary, we present an anti-coronavirus agent that works by an unexploited mechanism and prevents infection by a broad range of SARS-CoV-2 strains.

Keywords: SARS-CoV-2; antiviral; lectin; spike glycoprotein.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • COVID-19*
  • Cricetinae
  • Lectins
  • Oligosaccharides / pharmacology
  • SARS-CoV-2*

Substances

  • cyanovirin N
  • Oligosaccharides
  • Lectins

Supplementary concepts

  • SARS-CoV-2 variants