The pterostilbene skeleton is a promising chemical scaffold that exerts anti-inflammatory, anti-depressant, and anti-tumor effects. In this study, we aim to reduce in vivo and in vitro toxicity of compound 32 (preliminary work) and maintain its biological activity. A series of novel pterostilbene derivatives (D1-D43) were designed and synthesized, and their anti-inflammatory activities were screened. All compounds were screened to evaluate their inhibitory effect on LPS/Nigericin-induced IL-1β production and pyroptosis. The structure-activity relationships was deduced, and finally 1-((E)-4-(2-ethoxyethoxy)styryl)-3,5-dimethoxy-2-((E)-2-nitrovinyl)benzene (D22) was found to be a low-toxic compound with most potent inhibitory efficacy (against IL-1β: IC50 = 2.41 μM). Preliminary mechanism studies showed that compound D22 may affect the assembly of NLRP3 inflammasome by targeting NLRP3 protein, thereby inhibiting the activation of NLRP3 inflammasome. The in vivo anti-inflammatory activity indicated that compound D22 had significant therapeutic effects on DSS-induced mouse acute colitis models.
Keywords: IBD; Inhibitor; NLRP3 inflammasome; Pterostilbene derivatives.
Copyright © 2023 Elsevier Inc. All rights reserved.