One approach to studying the recognition of scenes and objects relies on the comparison of eye movement patterns during encoding and recognition. Past studies typically analyzed the perception of flat stimuli of limited extent presented on a computer monitor that did not require head movements. In contrast, participants in the present study saw omnidirectional panoramic scenes through an immersive 3D virtual reality viewer, and they could move their head freely to inspect different parts of the visual scenes. This allowed us to examine how unconstrained observers use their head and eyes to encode and recognize visual scenes. By studying head and eye movement within a fully immersive environment, and applying cross-recurrence analysis, we found that eye movements are strongly influenced by the content of the visual environment, as are head movements-though to a much lesser degree. Moreover, we found that the head and eyes are linked, with the head supporting, and by and large mirroring the movements of the eyes, consistent with the notion that the head operates to support the acquisition of visual information by the eyes.
Copyright: © 2023 Bischof et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.