Artificial Intelligence techniques based on Machine Learning algorithms, Neural Networks and Naïve Bayes can optimise the diagnostic process of the SARS-CoV-2 or Covid-19. The most significant help of these techniques is analysing data recorded by health professionals when treating patients with this disease. Health professionals' more specific focus is due to the reduction in the number of observable signs and symptoms, ranging from an acute respiratory condition to severe pneumonia, showing an efficient form of attribute engineering. It is important to note that the clinical diagnosis can vary from asymptomatic to extremely harsh conditions. About 80% of patients with Covid-19 may be asymptomatic or have few symptoms. Approximately 20% of the detected cases require hospital care because they have difficulty breathing, of which about 5% may require ventilatory support in the Intensive Care Unit. Also, the present study proposes a hybrid approach model, structured in the composition of Artificial Intelligence techniques, using Machine Learning algorithms, associated with multicriteria methods of decision support based on the Verbal Decision Analysis methodology, aiming at the discovery of knowledge, as well as exploring the predictive power of specific data in this study, to optimise the diagnostic models of Covid-19. Thus, the model will provide greater accuracy to the diagnosis sought through clinical observation.
Keywords: Covid-19; Decision support systems; Hybrid model; Machine learning; Medical diagnostic optimization; Verbal decision analysis.
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.