Remineralization effects of Er,Cr:YSGG and/or bioactive glass on human enamel after radiotherapy-an in vitro study

Lasers Med Sci. 2023 Feb 6;38(1):65. doi: 10.1007/s10103-023-03726-0.

Abstract

The aim was to evaluate the effects of Er,Cr:YSGG and/or bioactive glass 45S5 (BG) on the chemical and physical properties of enamel after radiotherapy. Third molar crowns were cut in half (buccal-lingually), and the mid part of the labial/oral surface was subjected to different protocols. All samples were treated with standard 70 Gy. After radiotherapy, enamel was treated with either Er,Cr:YSGG (2780 nm; pulse 60 μs) and BG or only BG, and control samples were kept in deionized water. Vickers microhardness, scanning electron microscopy (SEM), and characteristic X-ray spectroscopy (EDS) were performed before, after radiotherapy, and after treatment. Analysis of variance (ANOVA) was used. A significant drop in enamel microhardness was observed after radiotherapy (p < 0.001). After Er,Cr:YSGG and BG or BG alone, there was a significant increase in microhardness (p < 0.001), which was on average significantly higher compared to the initial measurements for Er,Cr:YSGG with BG (p < 0.001), but not observed in BG alone (p = 0.331). After radiotherapy, SEM showed increased surface roughness with eroded prisms. Er,Cr:YSGG and BG or BG alone both showed disorderly packed glass particles on the enamel surface. Radiotherapy noticeably reduced the concentrations of calcium and phosphorus. Er,Cr:YSGG and BG treatment increased the concentrations of calcium, sodium, phosphorus, and silicate. BG treatment alone increased the concetration of calcium and phosphorus. Directly induced radiotherapy led to potential damage of enamel, but afterwards treatment with Er,Cr:YSGG laser and BG resulted in a higher increase of enamel microhardness compared to BG alone, reflecting in a possible better remineralization effect.

Keywords: Bioactive glass; Er,Cr:YSGG laser; Radiotherapy; Remineralization.

MeSH terms

  • Calcium*
  • Humans
  • Lasers, Solid-State* / therapeutic use
  • Research Design

Substances

  • Calcium