Inhibition of multiple CDKs potentiates colon cancer chemotherapy via p73-mediated DR5 induction

Oncogene. 2023 Mar;42(12):869-880. doi: 10.1038/s41388-023-02598-6. Epub 2023 Jan 31.

Abstract

Targeting cyclin-dependent kinases (CDKs) has recently emerged as a promising therapeutic approach against cancer. However, the anticancer mechanisms of different CDK inhibitors (CDKIs) are not well understood. Our recent study revealed that selective CDK4/6 inhibitors sensitize colorectal cancer (CRC) cells to therapy-induced apoptosis by inducing Death Receptor 5 (DR5) via the p53 family member p73. In this study, we investigated if this pathway is involved in anticancer effects of different CDKIs. We found that less-selective CDKIs, including flavopiridol, roscovitine, dinaciclib, and SNS-032, induced DR5 via p73-mediated transcriptional activation. The induction of DR5 by these CDKIs was mediated by dephosphorylation of p73 at Threonine 86 and p73 nuclear translocation. Knockdown of a common target of these CDKIs, including CDK1, 2, or 9, recapitulated p73-mediated DR5 induction. CDKIs strongly synergized with 5-fluorouracil (5-FU), the most commonly used CRC chemotherapy agent, in vitro and in vivo to promote growth suppression and apoptosis, which required DR5 and p73. Together, these findings indicate p73-mediated DR5 induction as a potential tumor suppressive mechanism and a critical target engaged by different CDKIs in potentiating therapy-induced apoptosis in CRC cells. These findings help better understand the anticancer mechanisms of CDKIs and may help facilitate their clinical development and applications in CRC.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Antineoplastic Agents* / pharmacology
  • Antineoplastic Agents* / therapeutic use
  • Apoptosis
  • Cell Line, Tumor
  • Colonic Neoplasms* / drug therapy
  • Colonic Neoplasms* / genetics
  • Colonic Neoplasms* / metabolism
  • Cyclin-Dependent Kinases
  • Fluorouracil / pharmacology
  • Fluorouracil / therapeutic use
  • Humans

Substances

  • Cyclin-Dependent Kinases
  • Antineoplastic Agents
  • Fluorouracil