Eutrophication of water bodies due to excess ammonia nitrogen (NH4+-N) is harmful to aquatic organisms and human health. In this study, foundry dust (FD) from foundry industry was used to synthesize NaA zeolite to use as an adsorbent to remove NH4+-N from wastewater. Results demonstrate that FD could be successfully synthesized to form a foundry dust-based NaA zeolite (FZA) through adjustment of the silica-alumina ratio of n (SiO2)/n (Al2O3) at 2 at 95 °C. Specific surface area, total pore volume, and cation exchange capacity (CEC), and maximum adsorption NH4+-N of FZA was respectively 43.185 cm2/g, 0.0364 cm3/g, 212.35 mmol/100 g and 37.81 mg/g, which was 4.74, 1.54, 1.52 and 1.62 times as much as the NaA zeolite (SZA). FZA with higher adsorption NH4+-N capacity was related to higher specific surface area and CEC. The NH4+-N adsorption amount of 28.57 mg/g by FZA was obtained after the fourth regeneration, which was notably higher than that of SZA (23.27 mg/g). The desorption rate of NH4+-N from FZA was 87% by the fourth regeneration. FZA effectively removed NH4+-N from swine wastewater containing 153.32 mg/L NH4+-N. Results suggest that FZA could be used as absorbent to removal NH4+-N from wastewater.
Keywords: Adsorption; Ammonia; Solid waste; Swine wastewater; Synthesis; Zeolite.
Copyright © 2023 Elsevier Ltd. All rights reserved.