Skeletal muscles are natural motors executing sophisticated work through precise control of linear contraction. Although various liquid crystal polymers based artificial muscles have been designed, the mechanism based on mainly the order-disorder transition usually leads to discrete shape morphing, leaving arbitrary and precise deformation a huge challenge. Here, one novel photoresponsive hemiphasmidic side-chain liquid crystal polymer with a unique "breathing" columnar phase that enables continuous morphing is presented. Due to confinement inside the supramolecular columnar assembly, the cooperative movements of side-chains and backbones generate a significant negative thermal expansion and lead to temperature-controllable muscle-like elongation/contraction in the oriented polymer strip. The irreversible isomerization of the photoresponsive mesogens results in the synergistic phototunable bending and high-contrast fluorescence change. Based on the orthogonal responses to heat and light, controllable arm-like bending motions of this material, which is applicable in constructing advanced artificial muscles or intelligent soft robotics, are further demonstrated.
Keywords: artificial muscle; columnar liquid crystal phase; dual photoresponse; quantitatively elongation and bending; side-chain liquid crystal polymers.
© 2023 Wiley-VCH GmbH.