Background: Poly- and perfluoroalkyl substances (PFAS) are ubiquitous and persistent environmental contaminants that may act as endocrine disruptors in utero, but the specific endocrine pathways are unknown.
Objective: We examined associations between maternal serum PFAS and sex steroid hormones at three time points during pregnancy.
Methods: Pregnant women participating in the Understanding Pregnancy Signals and Infant Development (UPSIDE) study contributed biospecimens, questionnaire, and medical record data in each trimester (n = 285). PFAS (including perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA)) were analyzed in second-trimester serum samples by high-performance liquid chromatography and tandem mass spectrometry (LC-MS/MS). Total testosterone [TT], free testosterone [fT], estrone [E1], estradiol [E2], and estriol [E3]) were measured by LC-MS/MS in serum samples from each trimester. Linear mixed models with random intercepts were used to examine associations between log-transformed PFAS concentrations and hormone levels, adjusting for covariates, and stratifying by fetal sex. Results are presented as the mean percentage difference (Δ%) in hormone levels per ln-unit increase in PFAS concentration.
Results: In adjusted models, PFHxS was associated with higher TT (%Δ = 20.0, 95%CI: 1.7, 41.6), particularly among women carrying male fetuses (%Δ = 15.3, 95%CI: 1.2, 30.7); this association strengthened as the pregnancy progressed. PFNA (%Δ = 7.9, 95%CI: 3.4, 12.5) and PFDA (%Δ = 7.2, 95%CI: 4.9, 9.7) were associated with higher fT, with associations again observed only in women carrying male fetuses. PFHxS was associated with higher levels of E2 and E3 in women carrying female fetuses (%Δ = 13.2, 95%CI: 0.5, 29.1; %Δ = 17.9, 95%CI: 3.2, 34.8, respectively). No associations were observed for PFOS and PFOA.
Conclusion: PFHxS, PFNA, and PFDA may disrupt androgenic and estrogenic pathways in pregnancy in a sex-dependent manner.
Keywords: Androgens; Endocrine disruptors; Maternal hormones; PFAS; Pregnancy.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.