Photocatalytic degradation of pollutants is an effective environment purification strategy. Metal-organic frameworks (MOFs) have attracted extensive attention in the field of photocatalysis owing to their structural diversity, uniform cavity, and large specific surface area. However, poor electrical conductivity, light absorption, and water stability restrict their development. The tailorable structure of MOFs may effectively overcome these limitations. Herein, three Cu-based MOFs (complexes 1-3) with one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) structures, respectively, were successfully prepared by introducing different uncoordinated ligands and adjusting the ligand/metal salt ratio. Among them, complex 1 with a 1D chain was constructed as a typical J-type aggregation by π-π stacking interactions between adjacent naphthalene rings. This intermolecular aggregation mode enhances strong exciton coupling between conjugated rings, reduces the transition energy, expands the intrinsic light absorption edge, and provides a channel for electron transport, thus improving the charge-separation efficiency. As expected, complex 1 with a 1D chain structure exhibited excellent Fenton-like catalytic activity. The apparent reaction rates were 3.2 and 2.0 times higher than those of 2D and 3D MOFs, respectively.