Nomogram for Early Prediction of Outcome in Coma Patients with Severe Traumatic Brain Injury Receiving Right Median Nerve Electrical Stimulation Treatment

J Clin Med. 2022 Dec 19;11(24):7529. doi: 10.3390/jcm11247529.

Abstract

Background: Accurate outcome prediction can serve to approach, quantify and categorize severe traumatic brain injury (TBI) coma patients for right median electrical stimulation (RMNS) treatment, which can support rehabilitation plans. As a proof of concept for individual risk prediction, we created a novel nomogram model combining amplitude-integrated electroencephalography (AEEG) and clinically relevant parameters.

Methods: This study retrospective collected and analyzed a total of 228 coma patients after severe TBI in two medical centers. According to the extended Glasgow Outcome Scale (GOSE), patients were divided into a good outcome (GOSE 3-8) or a poor outcome (GOSE 1-2) group. Their clinical and biochemical indicators, together with EEG features, were explored retrospectively. The risk factors connected to the outcome of coma patients receiving RMNS treatment were identified using Cox proportional hazards regression. The discriminative capability and calibration of the model to forecast outcome were assessed by C statistics, calibration plots, and Kaplan-Meier curves on a personalized nomogram forecasting model.

Results: The study included 228 patients who received RMNS treatment for long-term coma after a severe TBI. The median age was 40 years, and 57.8% (132 of 228) of the patients were male. 67.0% (77 of 115) of coma patients in the high-risk group experienced a poor outcome after one year and the comparative data merely was 30.1% (34 of 113) in low-risk group patients. The following variables were integrated into the forecasting of outcome using the backward stepwise selection of Akaike information criterion: age, Glasgow Coma Scale (GCS) at admission, EEG reactivity (normal, absence, or the stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs)), and AEEG background pattern (A mode, B mode, or C mode). The C statistics revealed that the nomograms' discriminative potential and calibration demonstrated good predictive ability (0.71).

Conclusion: Our findings show that the nomogram model using AEEG parameters has the potential to predict outcomes in severe TBI coma patients receiving RMNS treatment. The model could classify patients into prognostic groups and worked well in internal validation.

Keywords: EEG; RMNS; coma; nomogram; prognosis; traumatic brain injury.

Grants and funding

This research received no external funding.