Using mass spectrometry-based high-throughput proteomics, we identified a membrane protein on extracellular vesicles (EVs), 90 K, which predicts poor overall survival of patients with head and neck cancer. 90 K levels in serum EVs could serve as an independent factor for poor prognosis of patients with head and neck cancer. Pre-treatment of immune competent mice with tumor-derived EVs (TDEs) elicited an immune-suppressive microenvironment for tumor cells, which was regulated by 90 K. The immunosuppressive function of TDE-90 K depends on the presence of myeloid derived suppressor cells (MDSCs) rather than regulatory T cells. The immune regulatory role of TDEs on MDSCs depends on miR-21 which is encapsulated in TDEs. Moreover, 90 K is required for the internalization of TDE cargo though interacting with integrin-β1 and anti-siglec-9 rather than directly affecting the immune function of MDSCs. 90 K modification of γδT cell-derived EVs (γδTEVs) could increase the delivery efficiency and therapeutic effect of PD-L1 siRNA by γδTEVs. We concluded that as a secreted protein modulating cell-cell and cell-matrix interactions, 90 K can be carried by TDEs to mediate the internalization and delivery of TDEs cargo by recipient cells. This function of 90 K could be utilized to improve the efficiency of EV-based drug delivery.
Keywords: 90 K; Delivery; Immune; LGALS3BP; Small extracellular vesicle; miR-21; γδT cell.
Copyright © 2022 Elsevier B.V. All rights reserved.