Background: Large-scale trials have shown that hypofractionated adjuvant breast radiotherapy was as effective in terms of survival and local control as conventional fractionated radiotherapy, and acute toxicity was reduced with hypofractionated radiotherapy. However, there is a lack of data about the toxicity of breast with regional nodal irradiation (RNI). The aim of this study was to assess the effect of fractionation on radiation-related acute skin toxicity in patients receiving RNI in addition to whole-breast or chest wall irradiation, using real-life data.
Methods: We conducted a prospective, multicenter cohort study with systematic computerized data collection integrated into Mosaiq®. Three comprehensive cancer centers used a standardized form to prospectively collect patient characteristics, treatment characteristics and toxicity.
Results: Between November 2016 and January 2022, 1727 patients were assessed; 1419 (82.2%) and 308 (17.8%) patients respectively received conventional fractionated and hypofractionated radiation therapy. Overall, the incidence of acute grade 2 or higher dermatitis was 28.4% (490 patients). Incidence was lower with hypofractionated than with conventional fractioned radiation therapy (odds ratio (OR) 0.34 [0.29;0.41]). Two prognostic factors were found to increase the risk of acute dermatitis, namely 3D (vs IMRT) and breast irradiation (vs chest wall).
Conclusion: Using real-life data from unselected patients with regional nodal irradiation, our findings confirm the decreased risk of dermatitis previously reported with hypofractionated radiation therapy in clinical trials. Expansion of systematic data collection systems to include additional centers as well as dosimetric data is warranted to further evaluate the short- and long-term effects of fractionation in real life.
Keywords: Adjuvant radiotherapy; Breast neoplasms; Conformal radiotherapy; Hypofractionation; Intensity-modulated; Observational study; Prospective studies; Radiation dose; Radiotherapy; Radiotherapy dose fractionation.
© 2022. The Author(s).