Purpose: Mild traumatic brain injuries (mTBI) sustained during contact sports like amateur boxing are found to have long-term sequelae, being linked to an increased risk of developing neurological conditions like Parkinson's disease. The aim of this study was to assess differences in volume of anatomical brain structures between amateur boxers and control subjects with a special interest in the affection of deep grey matter structures.
Methods: A total of 19 amateur boxers and 19 healthy controls (HC), matched for age and intelligence quotient (IQ), underwent 3T magnetic resonance imaging (MRI) as well as neuropsychological testing. Body mass index (BMI) was evaluated for every subject and data about years of boxing training and number of fights were collected for each boxer. The acquired 3D high resolution T1 weighted MR images were analyzed to measure the volumes of cortical grey matter (GM), white matter (WM), cerebrospinal fluid (CSF) and deep grey matter structures. Multivariate analysis was applied to reveal differences between groups referencing deep grey matter structures to normalized brain volume (NBV) to adjust for differences in head size and brain volume as well as adding BMI as cofactor.
Results: Total intracranial volume (TIV), comprising GM, WM and CSF, was lower in boxers compared to controls (by 7.1%, P = 0.009). Accordingly, GM (by 5.5%, P = 0.038) and WM (by 8.4%, P = 0.009) were reduced in boxers. Deep grey matter showed statistically lower volumes of the thalamus (by 8.1%, P = 0.006), caudate nucleus (by 11.1%, P = 0.004), putamen (by 8.1%, P = 0.011), globus pallidus (by 9.6%, P = 0.017) and nucleus accumbens (by 13.9%, P = 0.007) but not the amygdala (by 5.5%, P = 0.221), in boxers compared to HC.
Conclusion: Several deep grey matter structures were reduced in volume in the amateur boxer group. Furthermore, longitudinal studies are needed to determine the damage pattern affecting deep grey matter structures and its neuropsychological relevance.
Keywords: Concussion; Dementia; Diffuse axonal injury; Mild traumatic brain injury; Parkinson’s disease.
© 2022. The Author(s).