CONGA: Copy number variation genotyping in ancient genomes and low-coverage sequencing data

PLoS Comput Biol. 2022 Dec 14;18(12):e1010788. doi: 10.1371/journal.pcbi.1010788. eCollection 2022 Dec.

Abstract

To date, ancient genome analyses have been largely confined to the study of single nucleotide polymorphisms (SNPs). Copy number variants (CNVs) are a major contributor of disease and of evolutionary adaptation, but identifying CNVs in ancient shotgun-sequenced genomes is hampered by typical low genome coverage (<1×) and short fragments (<80 bps), precluding standard CNV detection software to be effectively applied to ancient genomes. Here we present CONGA, tailored for genotyping CNVs at low coverage. Simulations and down-sampling experiments suggest that CONGA can genotype deletions >1 kbps with F-scores >0.75 at ≥1×, and distinguish between heterozygous and homozygous states. We used CONGA to genotype 10,002 outgroup-ascertained deletions across a heterogenous set of 71 ancient human genomes spanning the last 50,000 years, produced using variable experimental protocols. A fraction of these (21/71) display divergent deletion profiles unrelated to their population origin, but attributable to technical factors such as coverage and read length. The majority of the sample (50/71), despite originating from nine different laboratories and having coverages ranging from 0.44×-26× (median 4×) and average read lengths 52-121 bps (median 69), exhibit coherent deletion frequencies. Across these 50 genomes, inter-individual genetic diversity measured using SNPs and CONGA-genotyped deletions are highly correlated. CONGA-genotyped deletions also display purifying selection signatures, as expected. CONGA thus paves the way for systematic CNV analyses in ancient genomes, despite the technical challenges posed by low and variable genome coverage.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA Copy Number Variations* / genetics
  • Genetics, Population
  • Genome, Human / genetics
  • Genomics* / methods
  • Genotype
  • Humans
  • Polymorphism, Single Nucleotide / genetics

Grants and funding

This work was supported by the European Research Council Consolidator grant “NEOGENE” (Project No.:772390 to MS) https://erc.europa.eu/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.