Background: Replication stress is a prominent hallmark of tumor cells, which is crucial for maintaining genomic integrity. However, it remains poorly understood whether replication stress can serve as a surrogate biomarker to indicate prognosis and treatment response of pancreatic cancer.
Methods: Transcriptomic and clinical data were obtained from The Cancer Genome Atlas and literature. An integrated signature of 18 replication-stress associated genes (termed as REST18) was established using the cox proportional hazards regression analysis. Tumors were sorted into REST18-low and REST18-high groups. Survival analysis, gene set enrichment analysis and composition of immune cells were compared between these tumors.
Results: Patients with REST18-high tumors showed worse prognoses than those with REST18-low tumors in the TCGA database and the finding is validated in an independent cohort of pancreatic cancer. Comparison of REST18 model and other molecular classifications showed that REST18-high tumors are positively correlated to basal-like or squamous phenotypes, which have higher metastasis potential. DNA repair pathway is enriched in the REST18-high tumors. Analysis of tumor immune microenvironment found that REST18-high tumors are characterized with "immune-cold" features. Univariate and multivariate analysis show that REST18 is an independent risk factor for overall survival and predicts outcomes of chemotherapy in pancreatic cancer.
Conclusion: REST18 is a novel biomarker to indicate prognosis and treatment response of chemotherapy in pancreatic cancer.
Keywords: Biomarkers; DNA damage; Tumor immune escape; Tumor microenvironment.
Copyright © 2022 IAP and EPC. Published by Elsevier B.V. All rights reserved.