Development and validation of a simple and rapid HILIC-MS/MS method for the quantification of low-abundant lysoglycerophospholipids in human plasma

Anal Bioanal Chem. 2023 Jan;415(3):411-425. doi: 10.1007/s00216-022-04421-9. Epub 2022 Nov 12.

Abstract

Lysoglycerophospholipids (Lyso-GPLs) are an essential class of signaling lipids with potential roles in human diseases, such as cancer, central nervous system diseases, and atherosclerosis. Current methods for the quantification of Lyso-GPLs involve complex sample pretreatment, long analysis times, and insufficient validation, which hinder the research of Lyso-GPLs in human studies, especially for Lyso-GPLs with low abundance in human plasma such as lysophosphatidic acid (LPA), lysophosphatidylinositol (LPI), lysophosphatidylglycerol (LPG), lysophosphatidylserine (LysoPS), lyso-platelet-activating factor (LysoPAF), and cyclic phosphatidic acid (cPA). Herein, we report the development and validation of a simple and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of Lyso-GPLs with low abundance in plasma. Protein precipitation using MeOH for Lyso-GPL extraction, quick separation (within 18 min) based on hydrophilic interaction liquid chromatography (HILIC), and sensitive MS detection under dynamic multiple reaction monitoring (dMRM) mode enabled efficient quantification of 22 Lyso-GPLs including 2 cPA, 4 LPG, 11 LPA, 2 LysoPS, and 3 LysoPAF in 50 μL of human plasma. The present method showed good linearity (goodness of fit, 0.99823-0.99995), sensitivity (lower limit of quantification, 0.03-14.06 ng/mL), accuracy (73-117%), precision (coefficient of variation ≤ 28%), carryover (≤ 17%), recovery (80-110%), and stability (83-123%). We applied the method in an epidemiological study and report concentrations of 18 Lyso-GPLs in 567 human plasma samples comparable to those of previous studies. Significant negative associations of LysoPAF C18, LysoPAF C18:1, and LysoPAF C16 with homeostatic model assessment for insulin resistance (HOMA-IR) level were observed; this indicates possible roles of LysoPAF in glucose homeostasis. The application of the present method will improve understanding of the roles of circulating low-abundant Lyso-GPLs in health and diseases.

Keywords: Diabetes; High-throughput; Lipidomics; Lysophospholipids.

MeSH terms

  • Chromatography, High Pressure Liquid / methods
  • Chromatography, Liquid / methods
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Plasma*
  • Reproducibility of Results
  • Tandem Mass Spectrometry* / methods

Substances

  • O-deacetyl platelet activating factor