Operando X-ray Studies of Ni-Containing Heteropolyvanadate Electrode for High-Energy Lithium-Ion Storage Applications

ACS Appl Mater Interfaces. 2022 Nov 23;14(46):52035-52045. doi: 10.1021/acsami.2c16777. Epub 2022 Nov 8.

Abstract

Ni-containing heteropolyvanadate, Na6[NiV14O40], was synthesized for the first time to be applied in high-energy lithium storage applications as a negative electrode material. Na6[NiV14O40] can be prepared via a facile solution process that is suitable for low-cost mass production. The as-prepared electrode provided a high capacity of approximately 700 mAh g-1 without degradation for 400 cycles, indicating excellent cycling stability. The mechanism of charge storage was investigated using operando X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), transition X-ray microscopy (TXM), and density functional theory (DFT) calculations. The results showed that V5+ was reduced to V2+ during lithiation, indicating that Na6[NiV14O40] is an insertion-type material. In addition, Na6[NiV14O40] maintained its amorphous structure with negligible volume expansion/contraction during cycling. Employed as the negative electrode in a lithium-ion battery (LIB), the Na6[NiV14O40]//LiFePO4 full cell had a high energy density of 300 W h kg-1. When applied in a lithium-ion capacitor, the Na6[NiV14O40]//expanded mesocarbon microbead full cell displayed energy densities of 218.5 and 47.9 W h kg-1 at power densities of 175.7 and 7774.2 W kg-1, respectively. These findings reveal that the negative electrode material Na6[NiV14O40] is a promising candidate for Li-ion storage applications.

Keywords: X-ray absorption spectroscopy; anode; heteropolyvanadate; lithium-ion storage; polyoxometalate.